|
|
Doble Máster Universitario en Ingeniería Industrial y en Ingeniería Electrónica, Robótica y AutomáticaDatos generales, Objetivos y CompetenciasCoordinador/a del másterCentro(s) responsables del títuloDescripción | ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA |
Código | 17 |
Dirección | CAMINO DESCUBRIMIENTOS, S/N.- ISLA CARTUJA |
Localidad | SEVILLA |
Código postal | 41092 |
Teléfono(s) | 95.448.61.00/61.50/73.96 |
Fax | 95.448.61.20 |
Email | jmhidalgo@us.es |
---|
Centro(s) responsables del títuloEscuela Técnica Superior de Ingeniería. Centro(s) en los que se oferta el títuloEscuela Técnica Superior de Ingeniería. Fecha de publicación en el RUCTMáster Universitario en Ingeniería Industrial Fecha Consejo de ministro: 26/09/2014 Fecha BOE: 18/10/2014 Máster Universitario en Ingeniería Electrónica, Robótica y Automática Fecha Consejo de ministro: 07/10/2016 Fecha BOE: 26/10/2016
Curso de implantaciónEl programa se implantó en el curso 2020-2021Rama de conocimientoIngeniería y ArquitecturaDuración del programaCréditos: 142.00 Años: 3 Tipo de enseñanzaPresencialLenguas utilizadasEspañolProfesión a la que capacitaINGENIERO INDUSTRIAL e INGENIERO EN ELECTRONICA,ROBÓTICA Y AUTOMATICAInformación sobre horarios, aulas y exámenesHorario del máster
Procedimiento para la expedición del suplemento Europeo al títuloBOE del Procedimiento Perfil del profesoradoRecursos materiales disponibles asignadosRecursos materiales Objetivos y ResultadosObjetivosEncontrará más información del doble máster explorando la página web de la ETSI
La culminación del itinerario conduce a la obtención de los dos títulos que lo componen. El máster se ha diseñado para proporcionar al alumnado una sólida formación científica, así como una amplia variedad de conocimientos que abarcan las dos titulaciones, que lo forja como profesional multidisciplinar capaz de desarrollar su labor profesional en industrias, empresas u organismos públicos, así como para el ejercicio libre de la profesión. Y en formar posgraduados en distintas ramas de la ingeniería con competencias en todos los temas que comprenden los campos de la Electrónica, la Automática y la Robótica. En concreto, el Máster en Electrónica, Robótica y Automática se orienta a los egresados en el Grado en Ingeniería en Electrónica, Robótica y Mecatrónica impartidos en Sevilla y Málaga,
a los graduados en Ingeniería en Tecnologías industriales con competencias en Electrónica y Automática, así como para los graduados en Ingeniería en Electrónica y Automática o Electrónica Industrial, como una continuación natural de sus estudios orientada hacia una mayor especialización en estos campos. El Máster en Ingeniería Industrial confiere las atribuciones de la profesión regulada de Ingeniero Industrial que habilitan para el ejercicio libre de la profesión.
Resultados del proceso de formación y de aprendizajeA continuación enumeramos todas las competencias que reúne el doble Master
COMPETENCIAS BÁSICAS: Las competencias básicas son las especificadas en Real Decreto 1393/2007, de 29 de octubre, por el que se establece la ordenación de las enseñanzas universitarias oficiales
MIERA.CB01: Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.
MIERA.CB02: Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
MIERA.CB03: Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
MIERA.CB04: Que los estudiantes sepan comunicar sus conclusiones –y los conocimientos y razones últimas que las sustentan– a públicos especializados y no especializados de un modo claro y sin ambigüedades.
MIERA.CB05: Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.
MII.CB06 Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.
MII.CB07 Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio;
MII.CB08 Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios;
MII.CB09 Que los estudiantes sepan comunicar sus conclusiones –y los conocimientos y razones últimas que las sustentan– a públicos especializados y no especializados de un modo claro y sin ambigüedades;
MII.CB10 Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.
COMPETENCIAS GENERALES: En el caso del master de Ingeniería Electrónica, Robótica y Automática ,se han incluido las competencias transversales establecidas por la European Network for Accreditation of Engineering Education (ENAEE) para la acreditación EUR-ACE de programas de Ingeniería, manteniendo la literalidad de las mismas aun a riesgo de introducir cierta redundancia entre competencias básicas y generales. Y han de demostrar las competencias genéricas de los graduados de primer ciclo a un nivel superior característico del nivel de máster, en concreto:
MIERA.CG01: Funcionar de forma efectiva tanto de forma individual como en equipo.
CG0.MIQ Capacidad para aplicar el método científico y los principios de la ingeniería y economía, para formular y resolver problemas complejos en procesos, equipos, instalaciones y servicios, en los que la materia experimente cambios en su composición, estado o contenido energético, característicos de la industria química y de otros sectores relacionados entre los que se encuentran el farmacéutico, biotecnológico, materiales, energético, alimentario o medioambiental.
MIERA.CG02: Utilizar distintos métodos para comunicarse de forma efectiva con la comunidad de ingenieros y con la sociedad en general.
CG02.MII Proyectar, calcular y diseñar productos, procesos, instalaciones y plantas.
MIERA.CG03: Demostrar conciencia sobre la responsabilidad de la práctica de la ingeniería, el impacto social y ambiental, y compromiso con la ética profesional, responsabilidad y normas de la práctica de la ingeniería.
CG03.MII Dirigir, planificar y supervisar equipos multidisciplinares.
MIERA.CG04: Demostrar conciencia de las prácticas empresariales y de gestión de proyectos, así como la gestión y el control de riesgos, y entender sus limitaciones.
CG04.MII Realizar investigación, desarrollo e innovación en productos, procesos y métodos.
MIERA.CG05: Reconocer la necesidad y tener la capacidad para desarrollar voluntariamente el aprendizaje continuo
CG05 MII Realizar la planificación estratégica y aplicarla a sistemas tanto constructivos como de producción, de calidad y de gestión medioambiental.
CG06 MII Gestionar técnica y económicamente proyectos, instalaciones, plantas, empresas y centros tecnológicos.
CG07 MII Poder ejercer funciones de dirección general, dirección técnica y dirección de proyectos I+D+i en plantas, empresas y centros tecnológicos.
CG08 MII Aplicar los conocimientos adquiridos y resolver problemas en entornos nuevos o poco conocidos dentro de contextos más amplios y multidisciplinares.
CG09 MII Ser capaz de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
CG10 MII Saber comunicar las conclusiones –y los conocimientos y razones últimas que las sustentan– a públicos especializados y no especializados de un modo claro y sin ambigüedades.
CG11 MII Poseer las habilidades de aprendizaje que permitan continuar estudiando de un modo autodirigido o autónomo.
CG12 MII Conocimiento, comprensión y capacidad para aplicar la legislación necesaria en el ejercicio de la profesión de Ingeniero Industrial.
COMPETENCIAS TRANSVERSALES
MIERA.CT01: Transversales (emprendimiento): Conocimientos de creación de empresas y motivación del espíritu emprendedor.
Comunes: Asimismo, los titulados de máster deben ser capaces de:
MIERA.CT06: Funcionar de forma efectiva como líder de un equipo formado por personas de distintas disciplinas y niveles.
MIERA.CT07: Trabajar y comunicarse eficazmente en contextos nacionales e internacionales. La competencia se adquirirá en varias asignaturas concretas mediante:
-La utilización de bibliografía en inglés
-La redacción de trabajos en forma de artículos, preferentemente en inglés
-La defensa pública de los trabajos, en castellano o inglés.
Asimismo, dicha competencia se trabajará de forma específica en la elaboración, redacción y defensa del Trabajo Fin de Máster.
CT01.MII Funcionar de forma efectiva tanto de forma individual como en equipo.
CT02.MII Utilizar distintos métodos para comunicarse de forma efectiva con la comunidad de ingenieros y con la sociedad en general.
CT03.MII Demostrar conciencia sobre la responsabilidad de la práctica de la ingeniería, el impacto social y ambiental, y compromiso con la ética profesional, responsabilidad y normas de la práctica de la ingeniería.
CT04.MII Demostrar conciencia de las prácticas empresariales y de gestión de proyectos, así como la gestión y el control de riesgos, y entender sus limitaciones.
CT05.MII Reconocer la necesidad y tener la capacidad para desarrollar voluntariamente el aprendizaje continuo.
CT06.MII Funcionar de forma efectiva como líder de un equipo formado por personas de distintas disciplinas y niveles.
CT07.MII Trabajar y comunicarse eficazmente en contextos nacionales e internacionales.
COMPETENCIAS ESPECÍFICAS:
MIERA.CE01: Comprensión sistemática del campo de la ingeniería relativo a la Automática y Robótica. Dominio de las habilidades y métodos de investigación relacionados con su área. Capacidad para aplicar los conocimientos a un amplio abanico de sectores industriales y económicos.
MIERA.CE02: Aplicación de conocimientos de una manera efectiva para resolver problemas multidisciplinares. Integración de conocimientos y métodos para la resolución de problemas.
MIERA.CE03: Diseño, análisis y puesta en práctica de sistemas para la automatización de procesos. En particular para aumentar el rendimiento, la producción, la competitividad, la calidad y para la optimización de los recursos energéticos y humanos.
MIERA.CE04: Identificación de fallos y posibles mejoras de los sistemas automatizados. Capacidad para el análisis cuantitativo y cualitativo del funcionamiento y las mejoras de los procesos.
MIERA.CE05: Identificación de los problemas que, dentro del ámbito de la Electrónica, Automática y Robótica, necesiten una investigación especial, porque son nuevos o porque son de difícil solución.
MIERA.CE06: Desarrollo de modelos matemáticos y herramientas de simulación de los sistemas dinámicos objeto de estudio en los campos de la Automática y Robótica.
MIERA.CE07: Capacidad para la práctica de procedimientos específicos en materia de análisis de dinámicos y diseño de controladores.
MIERA.CE08: Capacidad para la práctica de procedimientos específicos en materia de automatización e instrumentación.
MIERA.CE09: Capacidad para la práctica de procedimientos específicos en materia de Robótica.
MIERA.CE10: Capacidad para la práctica de procedimientos específicos en materia de Sistemas de Percepción.
MIERA.CE11: Que los estudiantes adquieran capacidad para poder analizar problemas de Electrónica y su contexto.
MIERA.CE12: Que los estudiantes adquieran capacidad para poder analizar el contexto regulador de la Electrónica.
MIERA.CE13: Que los estudiantes adquieran capacidad para incorporarse a grupos de trabajo multidisciplinar sobre materias relacionadas con la Electrónica.
MIERA.CE14: Que los estudiantes adquieran capacidad para la práctica de procedimientos específicos en materia de Redes Inalámbricas de Sensores y edificios inteligentes.
MIERA.CE15: Que los estudiantes adquieran capacidad para la práctica de procedimientos específicos en materia de microelectrónica analógica y digital y sistemas electrónicos avanzados de Comunicaciones.
MIERA.CE16: Que los estudiantes adquieran capacidad para la práctica de procedimientos específicos en materia de electrónica aplicada aviónica avanzada y comunicaciones embarcadas.
MIERA.CE17: Que los estudiantes adquieran capacidad para la práctica de procedimientos específicos en materia de microsistemas y nanotecnología.
MIERA.CE18: Que los estudiantes adquieran capacidad para la práctica de procedimientos específicos en materia de sistemas electrónicos para Smart Grids.
MIERA.CE19: Que los estudiantes adquieran capacidad para la práctica de procedimientos específicos en materia de métodos de conversión electrónica de potencia y energías renovables.
MIERA.CE20: Que los estudiantes adquieran capacidad para la práctica de procedimientos específicos para el desarrollo de entornos inteligentes basados en procesadores.
TECNOLOGIAS INDUSTRIALES MII.
CET01 Conocimiento y capacidad para el análisis y diseño de sistemas de generación, transporte y distribución de energía eléctrica.
CET02 Conocimiento y capacidad para proyectar, calcular y diseñar sistemas integrados de fabricación.
CET03 Capacidad para el diseño y ensayo de máquinas.
CET04 Capacidad para el análisis y diseño de procesos químicos.
CET05 Conocimientos y capacidades para el diseño y análisis de máquinas y motores térmicos, máquinas hidráulicas e instalaciones de calor y frío industrial.
CET06 Conocimientos y capacidades que permitan comprender, analizar, explotar y gestionar las distintas fuentes de energía.
CET07 Capacidad para diseñar sistemas electrónicos y de instrumentación industrial.
CET08 Capacidad para diseñar y proyectar sistemas de producción automatizados y control avanzado de procesos.
GESTION
CEG01 Conocimientos y capacidades para organizar y dirigir empresas.
CEG02 Conocimientos y capacidades de estrategia y planificación aplicadas a distintas estructuras organizativas.
CEG03 Conocimientos de derecho mercantil y laboral.
CEG04 Conocimientos de contabilidad financiera y de costes.
CEG05 Conocimientos de sistemas de información a la dirección, organización industrial, sistemas productivos y logística y sistemas de gestión de calidad.
CEG06 Capacidades para organización del trabajo y gestión de recursos humanos. Conocimientos sobre prevención de riesgos laborales.
CEG07 Conocimientos y capacidades para la dirección integrada de proyectos.
CEG08 Capacidad para la gestión de la Investigación, Desarrollo e INNOVACIÓN
TECNOLÓGICA.INSTALACIONES, PLANTAS Y CONSTRUCCIONES COMPLEMENTARIAS MII
CEI01 Capacidad para el diseño, construcción y explotación de plantas industriales.
CEI02 Conocimientos sobre construcción, edificación, instalaciones, infraestructuras y urbanismo en el ámbito de la ingeniería industrial.
CEI03 Conocimientos y capacidades para el cálculo y diseño de estructuras.
CEI04 Conocimiento y capacidades para el proyectar y diseñar instalaciones eléctricas y de fluidos, iluminación, climatización y ventilación, ahorro y eficiencia energética, acústica, comunicaciones, domótica y edificios inteligentes e instalaciones de Seguridad.
CEI05 Conocimientos sobre métodos y técnicas del transporte y manutención industrial.
CEI06 Conocimientos y capacidades para realizar verificación y control de instalaciones, procesos y productos.
CEI07 Conocimientos y capacidades para realizar certificaciones, auditorías, verificaciones, ensayos e informes.
TFM: Trabajo fin de máster: Realización, presentación y defensa, una vez obtenidos todos los créditos del plan de estudios, de un ejercicio original realizado individualmente ante un tribunal universitario, consistente en un proyecto integral en el que se sinteticen las competencias adquiridas en las enseñanzas.
EMPRENDIMIENTO
Conocimientos de creación de empresas y motivación del espíritu emprendedor.
Salidas profesionales y académicasSalidas Profesionales-El Máster en Electrónica, Robótica y Automática proporciona competencias de actuación en los siguientes campos: Instrumentación, Automatización (PLC, máquinas…), Robótica, Inspección, Control de procesos, Informática de tiempo real, Integración de Sistemas, Redes de distribución eléctrica inteligentes, redes de sensores inalámbricas, microelectrónica y nanotecnología, gestión de energías renovables, etc., todos ellos con una amplia aplicación dentro del tejido productivo de nuestro entorno, tales como el industrial, el aeronáutico, el de los transportes o el de la energía.
-Con el Máster Ingeniero Industrial se consigue la capacitación necesaria para conseguir empleo en todos los sectores industriales, desde la industria pesada a la de fabricación de bienes de equipo, como por ejemplo los sectores de industrias mecánicas, metalúrgicas, químicas y petroquímicas, producción de energía, energía eléctrica, automóvil, ferrocarril, alimentación, electrónica, automatización y robótica, y un amplio etc. También en oficinas técnicas y de desarrollo de proyectos industriales y en administraciones públicas. El Máster en Ingeniería Industrial confiere las atribuciones de la profesión regulada de Ingeniero Industrial que habilitan para el ejercicio libre de la profesión.
Salidas AcadémicasAcceso al DoctoradoAcceso a Doctorado Los egresados pueden también optar por realizar una carrera investigadora que les permita adquirir el título de Doctor y desarrollar sus funciones investigadoras, tanto en centros públicos (universidades, Consejo Superior de Investigaciones Científicas, etc.) como en empresas privadas. Con oportunidades de empleo tanto en el sector público como en la empresa privada.
https://www.etsi.us.es/doctorado Sistema de Garantía de Calidad del TítuloResultados del TítuloTasa de graduación | Porcentaje de estudiantes que finalizan la enseñanza en el tiempo
previsto en el plan de estudios o en un año académico más en relación a
su cohorte de entrada. |
---|
Tasa de abandono | Relación porcentual entre el número total de estudiantes de una cohorte de nuevo ingreso que debieron obtener el título en el curso académico anterior al curso objeto de estudio y que no se han matriculado ni en el curso objeto de estudio ni en el anterior. |
---|
Tasa de eficiencia | Relación porcentual entre el número total de créditos del plan de estudios en los que debieron haberse matriculado a lo largo de sus estudios el conjunto de titulados del curso objeto de estudio y el número total de créditos en los que realmente han tenido. |
---|
Tasa de rendimiento | Porcentaje entre el número total de créditos superados en un curso por el alumnado en el título en el curso objeto de estudio y el número total de créditos en los que se ha matriculado en dicho curso. |
---|
Tasa de éxito | Porcentaje de créditos superados por el alumnado en el curso objeto de estudio en relación al número de créditos correspondientes a las asignaturas a las que se ha presentado. |
---|
Descripción | 2017-2018 | 2018-2019 | 2019-2020 | 2020-2021 | 2021-2022 | 2022-2023 |
---|
Tasa de graduación | | | | | | | Tasa de abandono | | | | | | | Tasa de eficiencia | | | | | | 87.60 | Tasa de rendimiento | | | | 91.22 | 76.34 | 69.99 | Tasa de éxito | | | | 95.41 | 98.98 | 94.01 |
Descripción | 2017-2018 | 2018-2019 | 2019-2020 | 2020-2021 | 2021-2022 | 2022-2023 |
---|
Estudiantes de nuevo ingreso en el Título | | | | 5.00 | 6.00 | 4.00 | Nota media de ingreso | | | | | | | Duración media de los estudios | | | | | | | Satisfacción del alumnado con los estudios | | | | 1.67 | 3.25 | 3.67 | Satisfacción del PDI | | | | 3.83 | 4.00 | 4.00 | Satisfacción del personal de apoyo | | | | 4.07 | 4.27 | 4.31 | Satisfacción de los egresados | | | | | | | Satisfacción de los empleadores | | | | 4.38 | 4.37 | | Satisfacción del estudiantado con la IPD del título | | | | 1.67 | 3.00 | 3.67 | Satisfacción del profesorado con la IPD del título | | | | 4.17 | 4.29 | 3.91 | Grado de inserción laboral de titulados y tituladas | | | | | | | Movilidad internacional de alumnos | | | | | | | % o número de alumnos de movilidad entrantes | | | | | | | % o número de alumnos de movilidad salientes | | | | | | 7.14 | Oferta plazas de prácticas externas | | | | | 16.00 | 3.00 | Nivel de satisfacción con las prácticas externas | | | | | | | Total de alumnos matriculados SIN créditos reconocido | | | | 5.00 | 10.00 | 14.00 | Total de alumnos matriculados | | | | 5.00 | 11.00 | 14.00 | (*) A partir del curso 2016/2017 se puntúa sobre 5. |
Información sobre el Sistema de Garantía de Calidad del TítuloSistema de Garantía de Calidad de los Títulos:Información sobre el procedimiento para realizar sugerencias y reclamaciones:Sugerencias y reclamacionesBuzón de quejas |